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Abstract 

We introduce a notion of Grijbner reduction of everywhere convergent power series over the 
real or complex numbers with respect to ideals generated by polynomials and an admissible term 
ordering. The presented theory is situated somewhere between the known theories for polynomials 
and formal power series. Our main theorem states the existence of a formula for the division 
of everywhere convergent power series over the real or complex numbers by a finite set of 
polynomials. If the set of polynomials is a Griibner basis then the remainder of that division 
depends only on the equivalence class of the power series modulo the ideal generated by the 
polynomials. When the power series which shall be divided is a polynomial the division formula 
leads to a usual Grcbner representation well known from polynomial rings. Finally, the results 
are applied to prove the closedness of ideals generated by polynomials in the ring of everywhere 
convergent power series and to give a very simple proof of the affine version of Serre’s graph 

theorem. 

1991 Math. Subj C~~XS.: 13505, 46AO4, 13PlO 

1. Introduction 

In this paper, we introduce a notion of Griibner reduction of everywhere convergent 

power series over the real or complex numbers with respect to ideals generated by 

polynomials and an admissible term ordering. The presented theory is situated some- 

where between the known theories for polynomials and formal power series. The paper 
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results from the cooperation of authors working on different fields of mathematics. So, 

we hope that the subject of the paper will be interesting for scientists belonging to a 

wide spectrum of research areas, too. For the sake of selfcompleteness we start with 

a short introduction into the well-known theories of admissible term orderings and 

Grijbner bases for polynomial ideals in Section 2. For a comprehensive overview we 

refer to [3]. Section 3 contains the main theorem which says that there is a formula for 

the division of everywhere convergent power series over the real or complex numbers 

by a finite set of polynomials. If the set of polynomials is a Griibner basis then the 

remainder of that division depends only on the equivalence class of the power series 

modulo the ideal generated by the Grijbner basis. In case the power series which shall 

be divided is also a polynomial, the division formula gives a G-representation. 

Finally, in Section 4 we apply the results to prove the closedness of ideals generated 

by polynomials in the ring of everywhere convergent power series and to give a very 

simple proof of the affine version of Serre’s graph theorem. 

2. GrSbner bases and admissible orderings 

The basic algebraic structures involved in this paper are the polynomial ring R = 
W[X], the ring S = K[[X]] of formal power series, and the ring E = {f E Slf 
is convergent in W”}, where X = (Xi,. . . , X,) is the list of indeterminates. Since we 

are interested in convergence, we restrict ourself to the fields of complex (C) or real 

(R) numbers. Nevertheless, the results connected only with polynomials are valid with 

respect to an arbitrary coefficient field. Clearly, there are the inclusions R c E c S. 

In this paper convergency of power series always means convergency at the entire 

space K”. 

For f = CaENn cJa E S we define the support supp f = {ale, # 0) of f. For sets 

F c S we set suppF = UfEF supp f. The elements of R are just these of finite support. 

For the use of Griibner techniques it is necessary to order the monomials X” in such 

a way that the multiplication is (strong) monotone with respect to the ordering. Such 

orderings are called admissible term orderings (cf. [6]). Considering only the exponents 

a the investigation of these orderings can be done in W. The orderings induced in W 

will be also called admissible term orderings. 

The description of admissible term orderings in N” requires considerations in R”. 

Any linear form L = EYE, ZiXi, where Zi E R, defines a partial ordering CL in N” by 

Obviously, the partial ordering CL is monotone with respect to the addition in W. 

Using a second linear form L’ we may refine CL to a new monotone partial ordering 

C(LJ~) by comparing first with respect to CL and if this gives no decision then with 

respect to CL,. Iterating this process using only proper refinements, finally, after at most 

n steps, we come to an admissible term ordering. On the contrary, any term ordering 
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can be given by such a sequence of linear forms of [w”. A detailed description and 

classification of the admissible term orderings can be found in [14]. 

Dealing with polynomial rings, term well-orderings are used. This provides finite- 

ness of the reduction procedure. In rings of power series, often non-noetherian order- 

ings are used. Otherwise, even initial terms cannot be defined. In this paper we are 

working somewhere in between. We use Grobner basis theory in R but afterwards we 

apply it to elements of E. The reason is that in contrast to earlier works connected 

with Griibner reductions for power series (cf. [ 12, 131) we are considering a different 

topology. 

In this paper, from now on, ordering will always mean admissible term well-ordering. 

An example for an ordering is the lexicographical ordering +lex defined by a +rex #I if 

and only if the first non-zero component of a - j? is negative. 

Let us emphasize the importance of orderings which are given by a sequence of linear 

forms which have only natural number coefficients. These orderings can be described 

by the formula 

(2) 

where 2I is a regular n x n- matrix with natural number entries. 

The orderings of that type are exactly these term well-orderings which Robbiano 

called of lexicographical type in [14]. There it is also shown that we need exactly n 

linear forms and that the ith column of 9I may be chosen as the coefficients of the ith 

linear form. A linear form L with real coefficients defines an oriented hyperplane of [w” 

crossing the origin. Considering only a bounded area of [w” there exists always a second 

oriented hyperplane of [w” crossing the origin which has only integer coordinates such 

that there is no lattice point of N” lying between both hyperplanes (with respect to the 

orientation). As an easy conclusion we get from this fact, is that for an arbitrary term 

well-ordering 4 and any finite subset M c N” there exists an ordering 4% of type (2) 

such that +=+~I\M. 

Some of the investigations in Section 3 will require a more restricted type of term 

orderings having the property that for any given element of N” there exists only a 

finite number of smaller vectors. An ordering has this property if and only if its first 

linear form has only positive coefficients. 

The following lemma is due to Bayer [2] and shows how any ordering may be 

approximated by an ordering of this type. 

Lemma 2.1. Let < be a term ordering and M c N” a Jinite set. There exists a linear 

f orm 

L = 2 l& (0 < li E N). 
i=l 

(3) 

such that the restrictions of the partial orderings CL and + to M coincide. 
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Proof. The proof will be given by constructing a suitable linear form L. First of 

all we find an approximation +a of type (2) such that +IMM=+[M. If -+t is the 

lexicographical ordering, everything is easy. For instance, Bayer’s linear form L = 

EYE, t”-‘xi may b e used, where t E N is greater than the degree of any monomial X” 

for a E M. By setting 

A4N := {cqa EM}, 

the problem of the ordering described by the matrix % may be transformed into this 

for the lexicographical one. Let L lex be a suitable linear form for MS and -qex, 

i.e. Llex has positive integer coefficients and CL,, coincides with +leX on Ma, then 

we set L := %LI,, where L and Llex are considered as the column vectors of their 

coefficients. It is obvious that the L so-defined is of type (3) and that CL and < 

coincide on M. 0 

Any term ordering which is a refinement of CL, e.g. the ordering 

@*LP* 1 L(a) < L(B) or 
L(a) = L(P) A a + j? 

(4) 

will coincide on M with +. 

For some applications the weaker condition to L, namely, that only the refinement 

4~ of CL defined in (4) has to coincide with + on M is also sufhcient. The notions 

below depend on the chosen ordering. Sometimes, if different orderings are involved, 

we will index the notions by the corresponding ordering in order to avoid confusion. 

Otherwise, we assume that we are working with respect to a fixed term ordering and 

neglect the index. 

Let + be a fixed ordering. The maximal (with respect to 4) vector a appearing in 

supp f of a non-zero polynomial f E R is called the exponent exp f of f. Furthermore, 

the coefficient of XeXPf in f is called the leading coeficient lcf, the monomial inf := 

lcfXeXP f the initial term, and tail f := f - inf the tail of f. 
The notions of initial term and exponent will be extended to sets of polynomials in 

the usual way inF = {inf (f E F\(O)} and expF = {exp f 1 f E F\(O)}. If F contains 

at least one non-zero polynomial then the monoid ideal exp F + N” will be denoted by 

AF and the complement iV’\A, by DF. If F C(O) then, by definition, AF = 8. 

In what follows we consider only non-zero ideals Z and sets F of polynomials 

containing at least one non-zero polynomial. 

A power series g E E is called reducible with respect to a set F c R if suppgfl AF # 

8. Otherwise, g is said to be reduced with respect to F. Obviously, g is reduced with 

respect to F if and only if suppg c Q. This fact will be abbreviated by writing g E 

E&) or if g is even a polynomial also by g E R(jr)~). The definitions are restricted to 

convergent power series since, in general, reducibility introduced in this paper makes 

no sense for formal power series. 
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We say, that g E R reduces to g’ E R with respect to F c R (denoted by 

if there is an equation 

g’ = g - C$Yf, 

117 

9 z 9’) 

(5) 

wheref E F, y E N”, cy E K\(O), y + expf E suppg and y + expfesuppg’. 

Since we are working over a field, for any g which is reducible with respect to F 

there exists a g’ such that g --% g’. By the noetherianess of 4 the reduction process 

can be iterated only fmitely many times, i.e. for any polynomial g there is a (not 

necessarily unique) reduced polynomial gRd which satisfies g-%* gEd where * marks 

the reflexive, transitive closure of the reduction relation. The polynomials gr._d will be 

also called reduced forms of g with respect to F. There may be distinguished one of 

the reduced forms of g with respect to a finite basis F and an ordering 4 by fixing a 

reduction strategy, i.e. we have to use a stronger definition of reduction which ensures 

that there is at most one polynomial g’ such that g may be reduced in the stronger 

sense to g’ with respect to a fixed set F and a fixed term ordering 3. The simplest 

case where different reduced forms could be obtained occurs when a monomial has 

to be reduced which is divisible by more than one leading term of the polynomials 

from F. This reflects Buchberger’s main idea for the construction of S-polynomials (cf. 

[6]). In order to get uniqueness for a single reduction step for monomials we fix an 

enumeration of the elements of F and always use for the reduction the first possible 

element according to this enumeration (cf. [IO]). On reducing polynomials consisting 

of more than one monomial, the reduced form could depend on the choice of the next 

monomial to be reduced. At the moment we will complete the strategy for polynomials 

by requiring that the largest reducible exponent from the support should be treated first. 

Following Definition 2.2 we will show that the reduced form is already unique without 

using this second part of the strategy. 

If we need to emphasize that reduced forms of polynomials are obtained by applying 

a fixed unique reduction strategy we will call gred a normal form of g and denote it 

by Nfg. 

Definition 2.2. Let g E R, F c R, and 4 be a term ordering. A representation 

g = c hfS + grem, 
fEF 

where grem E R(~F), hf E R, and for any f E F we have either hf = 0 or 

exp hf + exp f 5 exp g, is called a G-representation of g with respect to F and 3. The 

polynomial grem is called a G-remainder of g with respect to F and +. Furthermore, the 

representation is called strong G-representation with respect to F and + if in addition 

all the vectors a + exp f, where f E F and a E supphf, are pairwise distinct. 

The strong G-representations are these G-representations with respect to finite sets F 
which can be constructed by iterated reduction in an algorithmic way. In this case 

the G-remainders are reduced forms of g. In contrast, a G-remainder of g is not 
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necessarily a reduced form of g with respect to F. For any unique reduction strategy, 

the normal form operator Nf is linear. For polynomials g and g’ consider associated 

normal forms Nfg and Nfg’ with respect to F, respectively. There exist strong G- 

representations g = CfEF hff + Nfg and g’ = CfEF h;f + Nfg’. We want to 

show that CfEF (hf + h; )f + Nf g + Nf g’ is a strong G-representation of g + g’ and 

that Nf(g + g’) = Nfg + Nfg’ with respect to the fixed reduction strategy. Suppose, 

there is a situation, such that ai +exp fi = CQ +exp f 2 = #I, where ai E supp (hf, + h;i ) 
(i = 1,2). Since the strong G-representations of g and g’ are constructed according 

to a selection strategy which determinates the f to be used for the reduction of a 

monomial, we must have fi = f2 and, consequently, al = ~2. Taking into account 

Nfg +Nfg’ E R(Q), we have proven that we have a strong G-representation of g + g’ 

with respect to F. Consequently, Nf(g + g’) = Nfg + Nfg’ with respect to our unique 

reduction strategy, including selection of the next monomial to be reduced. 

During the construction of the strong G-representation of g + g’ we did not use the 

second part of the reduction strategy. Suppose, g’ = -g and that the normal form 

strategies for Nfg and Nfg’ coincide only in the first part. According to the above 

ideas the difference of the strong G-representations provides a strong G-representation 

for g + g’ = 0, therefore, hf + h> = 0 for all f f F and Nfg = -Nfg’, i.e. the normal 

form of g does not depend on the second part of the reduction strategy. 

There still remains an open gap, namely the reduction of convergent power series. 

This gap will be closed in Section 3. Now we give a short introduction to the theory 

of Griibner bases [5] which turned out to be a very powerful tool in constructive 

commutative algebra (cf. [6, 81). 

Definition 2.3. A subset F c I of the ideal I c R such that inFR = in1R is called a 

Griibner basis of I (with respect to 4). 

This is the most common Griibner basis definition which can be used also in more 

general situations (cf. [15, 13, 4, 11). In the case of polynomial rings over a field there 

are different equivalent conditions: some of them will be listed below. 

Lemma 2.4. For a subset F c I of a non-zero ideal I the following conditions are 
equivalent: 

(i) F is a Griibner basis of I, 
(ii) AF = Al, 

(iii) any g E I\(O) is reducible with respect to F, 
(iv) any g E I has a G-representation with respect to F with grem = 0, 
(v) F generates I and the remainder grem appearing in G-representations of g E R 

with respect to F is uniquely determined. 

Proof. (i) + (ii), (ii) + (iii), and (iii) + (iv) are obvious. 

To prove (iv) + (v) we consider two remainders of g with respect to F. Clearly, we 

have k := grem -g:,, E InR(IDF). Consider the G-representation k = CfEF hf f +k,,. 
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For any f E F we must have either hf = 0 or exp hf + exp f + exp k since equality 

would yield exp k 6 a~. In conclusion either k = h,,,, = 0 or exp k,, = exp k for any 

G-representation of k with respect to F. From (iv) it follows grem - g:,, = 0, which 

completes the proof. 

It remains to show (v) + (i). Suppose that there is an element g E Z\(O), such that 

in g $ inFR. Since we are working over a field this means exp g $! A,v. Without loss 

of generality we may assume suppg c Q. For F generating I, there is a representation 

g = CfEF hff. Let f’ E F and CI E N” such that exp hZ + exp f + a + exp f’ for all 

f E F. Both g and 0 are remainders in a G-representation of X’f’ + g with respect 

to F. This contradicts the assumption (v). 0 

Above we have stated the difference between G-remainders and reduced forms of g 

with respect to F. According to condition (v) we have coincidence for Grobner bases. 

Analogous formulations of the conditions (iv) and (v) using strong G-representations 

would also yield equivalent conditions. It should be mentioned that there is a very 

important equivalence to the conditions of the lemma which is similar to (iv) but 

requires zero-remainders only for a finite number of special ideal elements, the 

so-called S-polynomials (cf. [6]). This condition is fundamental for the algorithmic 

construction of Griibner bases. The results presented in this paper are rather exis- 

tential than constructive since for any of the cases we are not yet able to give 

an algorithmic solution of the reduction problem for convergent power series. Ac- 

cording to our topology, even the question truncated results makes no 

sense. 

The existence of a (finite) Grijbner basis F of an arbitrary ideal Z c R with respect 

to a given ordering is obvious. For polynomial rings it makes sense to define reduced 

Griibner bases (cf. [6]) by 

Definition 2.5. F is called reduced Griibner basis if lc f = 1 and supp f n&\(f) = 0 
for all f E F. 

Proposition 2.6. The reduced Griibner basis of an ideal Z c R is jnite and unique. 

Proof. The finiteness of the reduced Griibner basis follows from the fact that A, as 

monoid ideal of the noetherian monoid N” is finitely generated. 

Let G and G’ be two reduced Grijbner bases of I. According to condition (iii) of 

Lemma 2.4 any element g of G must be reducible with respect to G’, i.e. there exists 

a g’ E G’ such that exp g E A,,,). On the other hand, we have exp g’ E Ao and 

exp g 6 Ao\br), therefore, exp g’ E Al,}. Consequently, exp g’ = exp g and ing’ = ing. 

It follows supp(g - g’) s(suppg U suppg’)\{expg}. Since g - g’ E Z it has to be zero 

or reducible with respect to both G and G’ according to condition (iii). The second 

case is impossible by the definition of the reduced Griibner basis. Consequently, we 

have g = g’ and G c G’. In the same way, we get the other inclusion. This completes 

the proof. 0 
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Proposition 2.7. For a Griibner basis F of the ideal I the set B := {X”la E D,v} 
forms a vector space basis of R/I. 

The assertion follows immediately from conditions (iv) and (v) of Lemma 2.4. 

Proposition 2.8. Let F c Z be a Griibner basis with respect to the ordering 4. Let 
4 be an ordering such that exp, f = exp,, f for all f E F. Then F is also Griibner 
basis of I with respect to 4. 

Proof. By construction it is AF,+ = AF,+,. Therefore, g is reducible with respect to F 
and + if and only if it is reducible with respect to F and 4’. According to condition 

iii) of Lemma 2.4 the claim will follow. 0 

Since suppG is finite for a (reduced) Griibner basis G of the ideal I with respect 

to an arbitrary ordering -x’ we find an ordering 4 described by a regular matrix with 

natural number entries such that G is also (reduced) Grobner basis with respect to the 

new ordering. Furthermore, the class of orderings of type (2) is large enough to find 

for any application of Griibner bases a convenient ordering within the class. 

By Lemma 2.1 the class of orderings could be restricted even more. It would be 

sufficient to consider only orderings of type (4). Unfortunately, for some applications 

as, e.g. the computation of elimination ideals, the construction of a suitable linear form 

L requires that a Grobner basis with respect to another ordering not of type (4) or 

at least some bound for its support is known in advance. On the other hand, for our 

applications in Section 3 it is already enough to know that for a given Grijbner basis 

there always exists an ordering of type (4) which gives rise to the same Griibner basis. 

At the end of this section we will present a well-known proposition which allows to 

construct elimination ideals. This proposition will be applied to Serre’s graph theorem 

in the last section. 

Proposition 2.9. Consider the polynomial ring R = [Id[Y,Z] in two groups Y and 
Z of indeterminates. Let + be an elimination ordering for Y, i.e. we have expZ’ + 

exp ( Ypi Zpz) for any non-zero vector /?I and arbitrary vectors j3z and a. Furthermore, 
let F c I be a Griibner basis of the ideal I c R with respect to 4. Then F n W[Z] 
is a Griibner basis of I n K[Z] with respect to the ordering -+ induced by + in Nk 
where k is the number of indeterminates contained in Z. 

Proof. Any element g E I has a G-representation g = CfW hff with respect to F and 

+. Clearly, F 17 W[Z] CI n W[Z]. Consider g E I n W[Z]. By definition of + it follows 

ing E W[Z] if and only if g E W[Z]. According to the exponent condition for G- 

representations all polynomials hf for f $2 W[Z] have to be zero. In the case f E W[Z] 
it must be hf E W[Z], too. Consequently, the above sum is also a G-representation of 

g in the ring W[Z] w.r.t. F n W[Z] and + z. According to condition (iv) of Lemma 2.4 

the claim will follow. q 
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Remark. Assume we are given two arbitrary orderings -XY and -Q acting on monomials 

depending only on Y and Z, respectively. Then there exists an elimination ordering 

+ for Y as defined in Proposition 2.9 which coincides with +r or -+ for monomials 

depending only on Y or Z, respectively. For example the ordering 4 defined by 

fulfills this condition. 

Furthermore, if Y are the first m indeterminates of X, and Z are the remaining n -m 

ones, then, e.g., the lexicographical ordering can be used for the elimination of Y 

from I. 

3. Reduction of convergent power series 

In Section 2 we left the gap regarding the result of the reduction of a reducible con- 

vergent power series. Clearly, a procedure similar to polynomials would not terminate 

in general. That, of course, is a problem also arising during the reduction of formal 

power series (cf. [13]). But, in that case, one may define reduction strategies which 

ensure that any truncation of the reduced power series may be computed exactly. Such 

a strategy cannot be applied to our problem, since a power series has no highest term 

with respect to an admissible term well-ordering. We could start the reduction with the 

smallest occurring monomial. But, in this case, any later reduction may change any of 

the already considered terms and we have to start from the very beginning in any step. 

What we get are series for the coefficients of the resulting power series. To answer the 

questions for convergence or even limits of this coefficient series is far from being easy. 

We avoid this problem by defining a one-step reduction. On the one hand we lose 

some constructivity of the reduction by this approach. But, on the other hand, we can 

solve many existence problems, e.g. we prove the convergence of the above mentioned 

coefficient series. 

Definition 3.1. Let g = CaEN” c,X” E E be a convergent power series, F c R a finite 

set of polynomials, and -i an admissible term well-ordering. We say that g reduces to 

gred with respect to F (denoted by g 5 g&) if gred = ErrEN” f&X:, for some reduced 

forms XE, with respect to F and -X of X’, for all a E N”. 

First of all, we have to justify our definition by proving the convergence of g&. As 

a by-product we will obtain that g& is reduced with respect to F. Therefore, gred will 

be again called a reduced form of g with respect to F. Using normal forms with respect 

to a fixed reduction strategy, instead of only reduced forms of the X’, we also obtain 

a unique normal form for gred which we will call as the normal form and denote by 

Nfg. The normal form operator is again linear. If g is a polynomial, the above normal 

form and the normal form from Section 2 coincide. 
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Let g = ENEN,, cJa E S and let r = (q,. . . ,m) be an n-tuple of positive real 

numbers. Following [9] we define the norm 

and the set B, := {g E SI ]lg]lr < +oo} of formal power series of finite norm. Clearly, 

we have Es B, for any r. We shall always consider the space E as a Frechet space 

with the topology determined by the system of seminorms (norms) )I . IIT corresponding 

to all r. Let us fix D G IV and set Br(D) := B, tl s(D). The space B, is a Banach 

algebra (cf. [9]), Br(D) as a closed subspace of B, is a Banach space and E(D) is a 

closed subspace of E . 

From this and from elementary facts concerning power series we may deduce the 

following lemma. 

Lemma 3.2. Let ry = (rl V ,..., rfiV),v = 1,2 ,... be a sequence of n-tuples of positive 
real numbers such that 

Yjv -+ +W when V--~CXA for j= 1,2 ,..., n. 

Ifga E E(D), for a E N”, and 

C IhlL, < +m, for v= 1,2,..., 
aEN” 

then the series EmEN” ga is convergent in E and its sum g E E(D). 

Remark. Let ga = CBENn g&Y B, for M E IV. Since the assumptions of Lemma 3.2 

imply that the family (c,g~B)~,b~~~ is absolutely summable, for any x E K”, 

c, aSENn c&@ is independent of ordering of summation. 

Before we apply this convergence criterion to our reduced power series we need a 

norm estimation in connection with the reduction process of polynomials. 

Lemma 3.3. Let F c R be a jinite set and 4 an admissible term well-ordering. There 
exists a sequence r,, as in Lemma 3.2 such that 

llg’llrv + IIc~~~II~~ I llsllrv, for v = 1,Z.. . 

for any simple reduction step g’ = g - c,J?‘f where g and g’ are polynomials and 
c&Y, and f are as in formula (5). 

Proof. By Lemma 2.1 there exists a linear form L = ~~=, r,Xi such that CL lsuppF = 

+ IsuppF. 
Set py = (vzl , . . . , h). Since F is finite there exists va E N such that 

Iliw f lip, = l&f Iv Lcexp+~ J”) 2 lItail+, f lip, + 1, for all f E F and v 2 VO, 

where +L is the refinement (4) of CL. 
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Since in+ f = in+ f and tail, f = tail,, f for any polynomial f E F, the sequence 

rv = Pv+vo, v = 1,2,... satisfies the conditions assumed in Lemma 3.2 and 

Ilin, f IL, 2 lItail+ f IL + 1 , for all f E F and v = 1,2,. . . . (6) 

We set a := y + exp, f. Then g can be decomposed in the form g = c,X’ + p 

such that a $ suppp and c, = c&f. Consequently, ll~llrv = IlplL, + llcJ”llr~ = 
Ilpllr, + lIcrXYin~fIIr, = llpIIr, + II~yXYllr~llin~fII, (v = L&...). BY (6) it follows 

IlsllTv L IIpIL, + IIc~X~II~, (lb&f III,, + 1) (v = LZ.. .I. (7) 

Applying the triangular inequality to the equation 

g’ = g - cVXyf = p + c,X’ - cyXYin, f - cqYtail+ f = p - c,XQail, f 

and then using the estimation (7) yields 

Ils’llr, 15 II PIL, + IlcyXYt& f IL,. = IIpllrv+ IIGUI~vlltail~ f IL 5 IlslL, - ll~rXyllrv y 

for v = 1 2 > >-.., which completes the proof. 0 

Proposition 3.4. Let F c R be a jinite set of polynomials, 4 an admissible term well- 
ordering and r, the sequence from Lemma 3.3, Then for any strong G-representation 

g = c hff + gred 
f@ 

of g E R with respect to F and + the following the conditions are satisfied: 

(i) bredIlrv + &F llh-IL, 5 Ibllro 
(ii) lbredb, 5 k?llrv3 

(iii) I(hfl(r,, 5 ((gllr, for all f E F, for all v = 1,2,. . . . 

Proof. Since the given G-representation of g is strong it can be rewritten in the form 

g = c $XaPfp + Shed 

providing a reduction sequence 

F 
g--+g-c~Xa’ fl 3 g - &XUPfP -2 

p=l p=l 

Condition (i) follows by applying Lemma 3.3 to each step of the reduction sequence. 

The conditions (ii) and (iii) are trivial consequences from (i). 0 

As the next proposition will show, the important property (ii) of Proposition 3.4 is 

not only valid for polynomials but also for convergent power series. 
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Proposition 3.5. Let F, 4 and r, be as in Proposition 3.4 . Furthermore, let g = 

c KEN” c,X” E E. Then we have the following properties: 
(i) the series gred = ENEN” caXzd is convergent in E(Q), 

(ii) ~~gred~~r, 5 ~k$,~fi~ Y = 1,2,... 

Proof. (i) follows from condition (ii) of Proposition 3.4 and Lemma 3.2 since Xz, E 

Wk) c E(Q). 
(ii) follows from 

llgredIlrv 5 c IIcctx:dIlrv 2 c IIcctxoLllrv = lldlrv. q 
UEN” UEN” 

Two very useful results we may conclude from this proposition are: 

Lemma 3.6. Let F be a finite subset of R and Nf a (power series) normal form 
operator with respect to F and an admissible term well-ordering +. Then: 

(i) The operator Nf : E - E(I)F) is continuous. 
(ii) If F is Griibner basis of some ideal I c R then Nfg = 0 for any element g E IE. 

Proof. (i) follows immediately from condition (ii) of Proposition 3.5 and the linearity 

condition of Nf. 

(ii) There exists a sequence of polynomials gp E I, ,u = 1,2,. . . such that lim,,, 

gfi = g. From Lemma 2.4 and the assumption that F is a Grijbner basis, we ob- 

tain Nfg, = 0 for the polynomials gp E 1. Since Nf is a continuous operator it 

follows 

Nfg = lim Nfg, = 0. 0 
p+c= 

The following main theorem of this paper states that there is a division formula for 

convergent power series modulo an ideal I generated by polynomials. Furthermore, the 

remainder of g with respect to a Grobner basis of Z is the only element of E(Dt) 
which is congruent to g modulo IE. 

Theorem 3.7. Let I c R be a polynomial ideal generated by the finite set F and + a 

term ordering. For g E E and g=d E E(DF) such that g 3 gred we have: 
(i) There exists a division formula 

9 = c hff + gred, 

f- 
(8) 

where h/ E E. In case g is a polynomial the division formula is a G-representation. 
(ii) Let F be a Griibner basis of I with respect to 4. Then for any power series 

g’ E E(9r) such that g - g’ E IE we have g’ = g& 
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Proof. (i) Let g = CaENn c,X”. According to Definition 3.1 there are 

representations 

125 

strong G- 

such that gr& = ,&N” c,.Xzd. Therefore, 

g = c c hf~~f + gred. 
@EN” ~EF 

Set hf := CaENn hf,a. Using condition (iii) of Proposition 3.4 and Lemma 3.2 it 

will follow immediately that the power series hf are absolutely, locally uniformly 

convergent in K”. The G-representation property is obvious. 

(ii) By condition (i) it follows gEd E ZE. Therefore, g’-grd E ZE~E(%F). According 

to Lemma 3.6, for any normal form operator we must have Nf(g’ - gred) = 0. But 

since g’ - gred is reduced this implies g’ - gEd = 0 and this completes the proof of 

part (ii). 0 

Note, that the notion of reduction introduced in Section 2 for polynomials could 

be used also for convergent power series. Obviously, a power series obtained by a 

reduction of a convergent power series would be also convergent and also congruent 

to the first power series modulo the ideal generated by F. But in general, after a finite 

number of reductions nothing of interest is produced, i.e. we do not gain constructi- 

vity. Therefore, we decided to start with the reduction notion of Definition 3.1, which 

provides immediately a useful result. 

The theorem shows that the vector space basis of R/Z defined by a Grijbner basis 

of Z has the preferable property that the image of any convergent power series mod- 

ulo ZE represented in terms of this basis is convergent, too. The following example 

shows that this property is not a matter of course for an arbitrary vector space basis 

of R/Z. 

Example: Consider the ideal Z = (v - l)R c R = W[X, Y]. The monomials {X” Yk! Ik E 

N} give a basis of the vector space R/Z. But C’&Xk/k! takes the representation c,“=, 

XkYk!/k! in terms of the above basis which is not convergent in K*. 

During the final preparations of this paper we got information about a very interest- 

ing paper of Djakov and Mitiagin ([7]). There, a division algorithm is presented for a 

convergent power series modulo polynomial ideals with respect to the degreewise lexi- 

cographical term ordering. Since the authors did not apply the theory of Grijbner bases 

in [7], their results are less constructive than it is here. Furthermore, the restriction of 

the term ordering will restrict also the possible applications. For instance, the proof of 

the afhne version of Serre’s graph theorem given in the next section requires the use 

of an elimination ordering. 
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4. Applications of reduction 

Very often the theory of Grijbner basis is applied to algorithmic solutions of com- 

putational tasks. In this section we will show that this theory may be also applied to 

prove hard theorems. 

Theorem 4.1. Let I be an ideal of R. Then IE = i??, where over bar denotes the 
closure relative to the topology of the Frechet space E. 

Proof. Let g E ???, i.e. there exists a sequence (gc()p=i,2,... of series gp E IE converging 

to g, i.e. lim,,, gp = g. Let F be a reduced Grobner basis of I and Nf a normal form 

operator with respect to F. From the condition (ii) of Lemma 3.6 it follows Nfg, = 0, 

for p = 1,2,... , and so the condition (i) of Lemma 3.6 implies Nfg = 0. By condition 

(i) of Theorem 3.7 there exists a representation 

where hf E E, for f E F. This implies g E IE and completes the proof. 0 

In the complex case, i.e. K = C, our topology coincides with the topology of local 

uniform convergence. Therefore, in this situation our theorem gives a closedness of the 

ideal IE in the topology of local uniform convergence in C” (cf. [16, Theorem 4.41). 

Now we come to a second application. Let Y be an algebraic subset of K” and 

f EE suchthat flV: V + K has algebraic graph. If K = C then (by Serre’s graph 

theorem [18]) there exists a polynomial g such that g1 V = f 1 V (for some more details 

we refer to [17, 111). 

Now we present a different proof of this fact (also for 06 = R) together with a 

construction of g. 

Theorem 4.2. Let I c R be the ideal of the set V. Zf f E E has algebraic graph on 
V then f red with respect to any Griibner basis of I is a polynomial. 

Proof. Let us consider the reduction with respect to the Grijbner basis F of I with 

respect to the ordering <. We introduce a new variable Y and consider the ring RY := 
R[Y] = W[X, Y] and choose an ordering +r convenient for the elimination of Y (see 

Proposition 2.9) which coincides with + for monomials depending only on X. Analo- 

gously, EY denotes the ring of power series convergent in the entire space K”+i . 
By assumption the graph W = V((Y - f )Ey + IEy) is algebraic. Therefore, there 

exists an ideal J c RY defining the same variety, i.e. V(J) = W. 
Let G be a Griibner basis of J with respect to +r. Consequently, Gn R is a Griibner 

basis of J fl R with respect to + and any polynomial belonging to G but not to R has 

an initial term depending on Y. Note, that a polynomial or convergent power series has 

a unique reduced form with respect to a Grobner basis, therefore, the terminology “the 

reduced form”, which will be used in the remaining proof, is justified. Since Y - f 
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vanishes on W the reduced forms of Y and f with respect to G have to be the same 

according to our main Theorem 3.7 . 

On the one hand, f depends only on the indeterminates X and therefore the re- 

duced form of f with respect to G is the same as with respect to G rl R. But the 

reduced form of f with respect to G n R lies in E and is independent of Y. On the 

other hand, Y is a polynomial and its reduced form with respect to G is again a 

polynomial. 

Combining both results we get f& E R, where the reduction is performed with 

respect to G n R. According to the construction of W all elements of I vanish on W. 

Therefore, IRy &J and I &J n R. Conversely, let us consider the projection II(W) of 

Kn+r to K” parallel to the Y-axis. Then V(JrlR) = II(W) = V(I) = V. By definition, 

Z contains all polynomials from R vanishing on V, therefore, J r? R C I. In conclusion 

I = JnR and fred is the polynomial we were looking for. 0 

From the theorem we may deduce that a convergent power series has algebraic graph 

on an algebraic set V if and only if the power series reduces to a polynomial with 

respect to an arbitrary Grobner basis of the ideal defined by V. That gives a criterion 

to decide whether or not the graph of a given convergent power series is algebraic on 

a given algebraic set V. First of all we choose an ordering and compute the Grobner 

basis of the ideal of V with respect to this ordering. If we may prove that the result 

of the reduction of the power series with respect to the Grobner basis has only finite 

support then we may conclude that the graph is algebraic. Contrary to this, if we may 

show that the support is infinite then we have proved that the graph is not algebraic. 

In order to facilitate the above task it should be stressed that we have the free choice 

of the ordering and may try to find a convenient one. 

Of course, the above criterion often will not lead to a decision. If the reduction of 

convergent power series would be algorithmic all could be solved. Indeed, this is not 

the case but note also that the question for finiteness of the support may be much 

easier to answer than finding the reduced power series. 

We will close the section with an example. 

Example. Consider the ideal I c R = W[X, Y,Z] generated by the polynomials 

F={ X2Z2+3YZ3+6Z4+X2Y+6Z3+6Z2+9Z, 

12YZ4 + 3Y4 + 12YZ3 + 12YZ2 + lSYZ, 

3z5 +x2z2 + 3YZ3 +X2Y} 

and the convergent power series 

Probably, it is not obvious from the first view whether or not 9 has an algebraic 

graph over V(Z). But computing the reduced Griibner basis Gd of I with respect to 
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the degreewise lexicographical ordering gives 

Gd = { Z4 + 1/3x25 YZ3 + 1/3x2Y, 

X2Z2 - 2X2Z + 6Z3 + 6Z2 + 95 

X2YZ - 3/4Y4 + X2Y - 3YZ2 - 9/2YZ, 

Y4Z - 3Y4 + 2YZ2 - 6YZ, 

X4Z + 54X2Z - 171Z3 - 162Z2 - 1622, 

X4Y f 27/2Y4 - 9YZ2 + 27YZ, 

X2Y4 + 165/2Y4 - 2X2Y + 6YZ2 + 171YZ, 

Y7 + 492Y4 - 4YZ2 + 984YZ). 

Reducing the power series g will give a result containing all three indeterminates. 

Nevertheless, looking carefully, one realizes that the number of reduced monomials 

which are not pure powers of X is finite and that the support of the reduced form of 

g does not contain pure powers of X, i.e. the graph of G is algebraic on V. Using the 

reduced Grijbner basis 

Gl = { Z5 - 2Z4 - 2Z3 - 2Z2 - 32, 

Y4 + 4YZ4 + 4YZ3 + 4YZ2 + 6YZ, 

X2Z + 3Z4,PY + 3YZ3) 

of I with respect to the lexicographical ordering this is much more obvious. One may 

immediately see, that I fl K[Y,Z] is zero-dimensional, and therefore, the reduced form 

of the power series g with respect to G, must be a polynomial in Y and Z since also 

g depends only on Y and Z. 
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